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Abstract

The penalty–projection method for the solution of Navier–Stokes equations may be viewed as a projection scheme where
an augmentation term is added in the first stage, namely the solution of the momentum balance equation, to constrain the
divergence of the predicted velocity field. After a presentation of the scheme in the time semi-discrete formulation, then in
fully discrete form for a finite element discretization, we assess its behaviour against a set of benchmark tests, including in
particular prescribed velocity and open boundary conditions. The results demonstrate that the augmentation always pro-
duces beneficial effects. As soon as the augmentation parameter takes a significant value, the projection method splitting
error is reduced, pressure boundary layers are suppressed and the loss of spatial convergence of the incremental projection
scheme in case of open boundary conditions does not occur anymore. For high values of the augmentation parameter, the
results of coupled solvers are recovered. Consequently, in contrast with standard penalty methods, there is no need for a
dependence of the augmentation parameter with the time step, and this latter can be kept to reasonable values, to avoid
to degrade too severely the conditioning of the linear operator associated to the velocity prediction step.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Since the pioneering work of Chorin and Temam [5,30] in the late sixties, pressure correction methods have
gained a lot of popularity for the solution of transient incompressible flow problems. Indeed, schemes of this
type have proved to be extremely efficient, essentially because, at each time step, they reduce the solution of a
saddle-point type problem to a cascade of decoupled elliptic equations for the velocity and the pressure. This
feature makes them particularly attractive for industrial applications, as for instance nuclear safety studies,
which are the context of this work.
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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The principle of pressure correction methods is to perform the advance in time in two steps: in a first stage,
the momentum balance is solved to obtain an intermediate (or predicted) velocity field; then this intermediate
velocity is projected on a space of solenoidal vector fields. This process introduces a numerical error, often
called the ‘‘splitting error’’, which magnitude may be expected at least heuristically to be linked to the mag-
nitude of the divergence of the predicted velocity. Hence the basic approach followed here is to constrain the
divergence of the intermediate velocity field by adding in the first step of the scheme an augmentation term, of
the same form as in augmented Lagrangian methods [7]. This idea has been already suggested in the literature,
first by Shen [25] and then, independently and with some additional variants, by Caltagirone and Breil [4]. In
particular, a different projection step is proposed (called by the authors ‘‘vector projection step’’), which is not
used in the present work. In the paper by Shen, this novel family of numerical schemes was introduced as an
improvement of both pressure correction and penalty methods (see [27] and references herein), and received
the name of penalty–projection method. The numerical scheme presented here falls in this category, but is dif-
ferent from the original one, by changes in the algorithm itself, together with the fact that the augmentation
parameter is totally independent from the time step Dt, whereas it was varying as Dt�2 in [25]. This point is
discussed in the last remark of Section 2. To the best of our knowledge, no in-depth numerical study of
any penalty–projection scheme is available in the literature; this is the general purpose of the present paper,
together with a derivation of the method, dealing with general boundary conditions and including some imple-
mentation issues.

From our experience of the use of augmented Lagrangian methods in the finite element framework, it
appears preferable to build the augmentation terms from the algebraic formulation of the discrete equations.
This is due to the fact that the constraint in the continuous sense is usually not satisfied by the discrete solu-
tion: for the problem at hand, namely the solution of incompressible Navier–Stokes equations with a finite
element method, the divergence constraint is only imposed in a weak sense. Consequently, an augmentation
term built with the continuous expression of the constraint does not vanish for the solution of the discrete
problem, and its presence may severely impact the results (see Section 3 for an explanation). However, to
avoid an unnecessary restriction of the presentation to the finite element context, we choose to first carry
out an introduction of the penalty–projection scheme in a space-continuous formulation. This is the goal
of Section 2. The reader will keep in mind that, for practical implementation, the correct formulation of
the method is given in the following section (Section 3), where the formulation of the scheme in the finite ele-
ment context is detailed. In the last part of the paper, we compare the penalty–projection scheme to reference
algorithms, namely the classical Euler semi-implicit method and frequently encountered projection schemes,
for a set of benchmark tests involving a wide range of situations. In particular, besides prescribed velocity
boundary conditions, we also consider the more challenging case (for pressure correction methods) of open
boundary conditions.

2. The time semi-discrete algorithm

We are interested in the solution of the Navier–Stokes equations, governing an incompressible and isother-
mal flow of a Newtonian fluid, which read:
.
ou
ot
þ ðu � rÞu

� �
¼ �rp þr � sðuÞ þ .g in ½0; T � � X ð1aÞ

r � u ¼ 0 in ½0; T � � X ð1bÞ
u ¼ uCD

on ½0; T � � CD ð1cÞ
� pnþ sðuÞ � n ¼ fN on ½0; T � � CN ð1dÞ
u ¼ u0 in f0g � X ð1eÞ
where u stands for the fluid velocity of initial value u0, p for the pressure, g for the external body forces, and .
for the fluid density, supposed to be a positive constant. The computational domain X is an open bounded
connected subset of Rd with d = 2 or d = 3. We suppose that the boundary C of X is partitioned in two subsets
CD and CN, of outward normal vector n. On CD, the velocity is set to the value uCD

; the force per surface unit
exerted at each point of the boundary CN is given and equal to fN.
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The tensor s stands for the viscous part of the stress tensor, the divergence of which is given by one of the
following expressions:
r � sðuÞ ¼ lDu ð2aÞ
or
r � sðuÞ ¼ r � lðruþruTÞ ð2bÞ
where l stands for the dynamic viscosity of the fluid. As Eq. (2a) is physically meaningful only if the parameter
l is a constant, this relation will be used only in this restrictive case in the rest of the paper.

Let 0 = t0 < t1 <� � �< tN = T be a partition of the time interval of computation [0, T], which we suppose
uniform for the sake of simplicity. We denote by Dt the time step, i.e., the constant difference between two
successive times tn and tn+1, 0 6 n 6 N � 1. A semi-implicit semi-discretization of the system of equations
(1) with respect to the time variable is given by:
.
Dunþ1

Dt
þ ðuH;nþ1 � rÞunþ1

� �
¼ �rpnþ1 þr � sðunþ1Þ þ .g in X ð3aÞ

r � unþ1 ¼ 0 in X ð3bÞ
unþ1 ¼ unþ1

CD
on CD ð3cÞ

� pnþ1nþ sðunþ1Þ � n ¼ f nþ1
N on CN ð3dÞ
where unþ1
CD
¼ uCD

ðtnþ1Þ, fN
n+1 = fN(tn+1), un and pn stand for an approximation of, respectively, the velocity u

and the pressure p at t = tn, uw,n+1 is an extrapolation of the velocity at tn+1 and Dun+1/Dt provides an approx-
imation of the time derivative of the velocity at tn+1 by a backward differentiation formula, which takes the
general form:
Dunþ1 ¼def
bqunþ1 �

Xq�1

j¼0

bju
n�j
In practice, the following choices are commonly used:
Dunþ1 ¼ unþ1 � un; uH;nþ1 ¼ un ð4Þ

Dunþ1 ¼ 3

2
unþ1 � 2un þ 1

2
un�1; uH;nþ1 ¼ 2un � un�1 ð5Þ
The first choice (4) leads to a first order scheme, the second one (5) to a formally second order numerical
method.

Due to the saddle-point nature of the system (3), the solution is CPU-time consuming, which makes decou-
pled fractional step strategies attractive. The penalty–projection method belongs to this family of schemes.
Classically, the first step consists in the solution of the momentum balance equation using a beginning-of-step
value for the pressure. The specific feature of the proposed scheme lies in the addition at this stage of an aug-
mentation term built from the divergence constraint. This yields the following elliptic problem for an interme-
diate velocity field at time tn+1, ~unþ1:
.
bq~u

nþ1 �
Pq�1

j¼0 bju
n�j

Dt
þ ðuH;nþ1 � rÞ~unþ1

" #
� rrðr � ~unþ1Þ ¼ �rpn þr � sð~unþ1Þ þ .g in X ð6aÞ

~unþ1 ¼ unþ1
CD

on CD ð6bÞ
� pnnþ sð~unþ1Þ � n ¼ f nþ1

N on CN ð6cÞ
where r is an augmentation parameter to be defined.
Let H be the following affine variety of divergence free vector fields:
H ¼ fv 2 ½L2ðXÞ�d ; r � v ¼ 0; v � n ¼ unþ1
CD
� n on CDg
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The second step of a projection method is usually chosen to realize the L2 orthogonal projection of ~unþ1 onto
H, which takes the general form:
bq.
unþ1 � ~unþ1

Dt
þr/ ¼ 0 in X ð7aÞ

r � unþ1 ¼ 0 in X ð7bÞ
For computational efficiency reason, this Darcy system is then reformulated by taking the divergence of the
first relation to obtain a Poisson problem for /, which must be supplemented by boundary conditions on CD

and CN. The first one follows from the definition of H:
unþ1 � n ¼ ~unþ1 � n ¼ unþ1
CD
� n on CD
and, consequently:
r/ � n ¼ 0 on CD
The second one is derived from the L2-orthogonality condition for the projection onto H, which reads:
Z
X
ðunþ1 � ~unþ1Þ � ðunþ1 � vÞ ¼ 0 8v 2 H
By the relation (7a), integrating by parts and using the definition of H yields:
0 ¼
Z

X
r/ � ðunþ1 � vÞ ¼

Z
C

/ðunþ1 � vÞ � n�
Z

X
/r � ðunþ1 � vÞ ¼

Z
CN

/ðunþ1 � vÞ � n 8v 2 H
which is satisfied if the following Dirichlet boundary condition for / holds:
/ ¼ 0 on CN
Finally, / is then the solution of the following elliptic problem:
D/ ¼
bq.

Dt
r � ~unþ1 in X ð8aÞ

r/ � n ¼ 0 on CD ð8bÞ
/ ¼ 0 on CN ð8cÞ
The end-of-step velocity is computed afterwards by the relation (7a):
unþ1 ¼ ~unþ1 � Dt
bq.
r/ ð9Þ
Finally, to obtain an expression for an approximation of the pressure at time tn+1, we add the relations (6a)
and (7a) to recover a discretization of the momentum balance equation at time tn+1:
.
bqunþ1 �

Pq�1
j¼0 bju

n�j

Dt
þ ðuH;nþ1 � rÞ~unþ1

" #
¼ �rðpn � rr � ~unþ1 þ /Þ þ r � sð~unþ1Þ þ .g in X ð10Þ
This suggests the following expression for pn+1:
pnþ1 ¼ pn � rr � ~unþ1 þ / ð11Þ

To summarize, the algorithm corresponding to one time step of the penalty–projection method consists in
solving the sequence of Eqs. (6) and (8) and computing the end-of step velocity and pressure by (9) and
(11), respectively. For the reader’s convenience, these four steps are gathered at the beginning of Section 4
(Eq. (21)), together with a synthetic presentation of some of the most popular projection schemes.

Remark (Construction of a rotational penalty–projection method). Following ideas of [31,17], it is possible to
build what is termed in [17] as a ‘‘rotational pressure correction method’’. We suppose temporarily that we are
in the case where the viscosity is constant and r � sð~unþ1Þ is equal to lD~unþ1.
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Using the identity D~unþ1 ¼ �r ^ ðr ^ ~unþ1Þ þ rðr � ~unþ1Þ, Eq. (10) reads equivalently:
.
bqunþ1 �

Pq�1
j¼0 bju

n�j

Dt
þ ðuH;nþ1 � rÞ~unþ1

" #
¼ �rðpn � rr � ~unþ1 þ /Þ � lr ^ ðr ^ ~unþ1Þ þ lrðr � ~unþ1Þ þ .g ð12Þ
Using the fact that the rotational of a gradient vanishes, the relation (7a) yields:
r ^ ~unþ1 ¼ r ^ unþ1
As the end-of-step velocity un+1 is divergence free, we then get:
r ^ ðr ^ ~unþ1Þ ¼ r ^ ðr ^ unþ1Þ ¼ �Dunþ1
and the time-discrete momentum balance equation finally reads:
.
bqunþ1 �

Pq�1
j¼0 bju

n�j

Dt
þ ðuH;nþ1 � rÞ~unþ1

" #
¼ �rðpn � ðr þ lÞr � ~unþ1 þ /Þ þ lDunþ1 þ .g ð13Þ
We then have recovered an expression closer to the semi-implicit time discretization, with an additional term
in the pressure increment:
pnþ1 ¼ pn � ðr þ lÞr � ~unþ1 þ /
This variant will be named hereafter the rotational penalty–projection scheme.

Remark (From penalty methods to penalty–projection methods). The penalty scheme for the Navier–Stokes
equations takes, in its simplest version, the following form:
.
Dunþ1

Dt
þ ðuH;nþ1 � rÞunþ1

� �
¼ �rpnþ1 þr � sðunþ1Þ þ .g

r � unþ1 þ �pnþ1 ¼ 0
where the positive penalty parameter � is taken far smaller than 1. Since the pressure can be explicitly ex-
pressed as a function of the velocity divergence by the second equation, it can be eliminated from the system
to yield:
.
Dunþ1

Dt
þ ðuH;nþ1 � rÞunþ1

� �
� 1

�
rðr � unþ1Þ ¼ r � sðunþ1Þ þ .g ð14Þ
which introduces an augmentation-like term (with r = 1/�) in the momentum balance equation.

Remark (Comparison of the present scheme and the penalty–projection method proposed by Shen [25]). As
quoted in the introduction, the first penalty–projection scheme has been introduced by Shen in 1992 [25, Sec-
tion 6]. The main difference between this scheme and the method presented here lies in the integration of the
pressure in the algorithm. Indeed, Shen builds an auxiliary sequence wn, 0 6 n 6 N � 1, by the following
induction relation:
wnþ1 ¼ wn þ /
where / is given by the system (7). The quantity wn is used in the prediction step (6) instead of pn, and an
approximation of the pressure is computed only as a ‘‘post-processing’’ of the outcomes of the computation,
by two possible relations in the spirit of (11), the most simple one reading:
pnþ1 ¼ wnþ1 � rr � ~unþ1
In addition, in [25], the augmentation parameter is varying with the time step, and the author shows that a sec-
ond order Crank–Nicholson discretization of the momentum balance equation combined with an adjustment
of r as r . Dt�2 leads to a second order scheme. We adopt here a different point of view, in trying to assess the
properties of the method when the augmentation parameter is kept constant (and within reasonable values), to
avoid to excessively degrade the conditioning of the linear system associated to the velocity prediction step.
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3. A finite element implementation

We now turn to the finite element implementation of the penalty–projection method. As mentioned in Sec-
tion 1, due to the fact that the discrete solution is only ‘‘discretely-divergence-free’’, it seems preferable to build
the augmentation term at the algebraic level, to avoid a non-intentional perturbation of the solution growing
with the augmentation parameter. To this purpose, we must proceed as follows: first, we discretize in space the
time-discrete equations of the scheme keeping them free of any augmentation term, then this latter is added
afterwards.

Let a finite element discretization of the velocity and pressure be given, or, equivalently, let two Lagrange
finite element spaces Vh and Mh included respectively in [H1(X)]d and L2(X) be chosen. In addition, the pres-
sure approximation space is required to be included in H1(X), to allow a conforming approximation of the
Poisson’s step.

This discrete variational formulation associated to the coupled problem (3) at the (n + 1)th time step is then
routinely converted into an algebraic system of the form:
bq

Dt
MUF þ AUF þ BTP ¼ F

BUF ¼ G

8<: ð15Þ
where UF and P are vectors gathering the degrees of freedom of, respectively, the velocity and the pressure at
time tn+1, and the right-hand members F and G represent the effects of the forcing term and non-homogeneous
Neuman boundary conditions (for F) together with the effects of the discrete lifting associated to non-homo-
geneous velocity Dirichlet boundary conditions (for F and G).

The augmentation term is built by pre-multiplying the discrete divergence constraint by a scaling (symmet-
rical definite positive) matrix, denoted M�1

p because a typical choice for this operator is the inverse of the
lumped pressure mass matrix, then by the matrix BT to obtain a positive symmetrical operator:
augmentation term ¼ rBTM�1
p ðBUF �GÞ
where r is the (positive and constant) augmentation parameter. As in the time semi-discrete case, the first step
of the penalty–projection method is obtained from the momentum balance equation by taking the pressure at
the beginning of the time step and adding the augmentation term:
bq

Dt
M eUF þ AeUF þ rBTM�1

p BeUF þ BTPexp ¼ Fþ rBTM�1
p G ð16Þ
where eUF and Pexp are vectors gathering the degrees of freedom of, respectively, the predicted velocity and the
explicit pressure, that is the pressure at tn.

The algebraic analogue of the projection step (7) reads:
bq

Dt
MðUF � eUFÞ þ BTU ¼ 0

BUF ¼ G

8<: ð17Þ
where U is the vector associated to the projector /. Solving the first relation for UF and substituting the
obtained expression in the second equation yields:
BM�1BTU ¼
bq

Dt
ðBeUF �GÞ
As, in the general case, the velocity mass matrix is not diagonal, handling the operator BM�1BT appears to be
rather inefficient. Relation (8) suggests to replace it by:
LU ¼
bq.

Dt
ðBeUF �GÞ ð18Þ
where L is the discrete operator associated to a Poisson problem with Dirichlet boundary conditions on CN

and natural Neumann conditions on CD. To avoid some complexity in the assembling process (for instance,
eliminating in the linear systems the degrees of freedom of / associated with the pressure nodes located on CN
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would lead to vectors of different dimension for U and P), the Dirichlet boundary conditions may be simply
imposed by penalization.

Finally, the end of step pressure is obtained by following the same technique than in the time semi-discrete
case, that is building a discrete momentum equation by adding relation (16) to the first equation of (17) and
comparing to the semi-implicit discretization of the momentum balance (15). This process yields:
P ¼ Pexp þUþ rM�1
p ðBeUF �GÞ ð19Þ
To sum up the developments of this section, the algorithm for performing a time step of the penalty–projection
method is obtained by gathering Eqs. (16) and (18), the first relation of (17) and (19):
bq

Dt
Mþ Aþ rBTM�1

p B

� � eUF þ BTPexp ¼ Fþ rBTM�1
p G

LU ¼
bq.

Dt
ðBeUF �GÞ

UF ¼ eUF �
Dt
bq

M�1BTU

P ¼ Pexp þUþ rM�1
p ðBeUF �GÞ

8>>>>>>>>>><>>>>>>>>>>:
ð20Þ
Remark (On the derivation of the augmentation term). A direct finite element space-discretization of the time
semi-discrete equations of the preceding section leads to an augmentation term which appears in the
variational form of the momentum balance equation as:
r
Z

X
r � uhr � v
As the divergence of the velocity test functions v does not lie in the pressure discrete space, this term does not
vanish by the continuity equation for the discrete solution. Consequently, using this formulation leads to a
dependence of the solution on the augmentation parameter. For the particular discretization used here (Tay-
lor–Hood element), an excessive smearing of the solution is then observed at high values of r.
4. Numerical experiments

The objective of the present section is to perform a comparison between the projection method presented
here and various pressure correction schemes widely used in the literature for the solution of unstationary
incompressible flow problems. In the time-discrete setting (which, as explained in the preceding section, is
somewhat incorrect for the augmentation terms), the methods considered here can be recast under the form
of a four stages fractional step scheme as follows:
.
bq~u

nþ1 �
Pq�1

j¼0 bju
n�j

Dt
þ ðuH;nþ1 � rÞ~unþ1

" #
� r1rðr � ~unþ1Þ ¼ �rpn þr � sð~unþ1Þ þ .g in X

~unþ1 ¼ unþ1
CD

on CD

�pnnþ sð~unþ1Þ � n ¼ f nþ1
N on CN

����������
ð21aÞ

D/ ¼
bq .

Dt
r � ~unþ1 in X

r/ � n ¼ 0 on CD

/ ¼ 0 on CN

�������� ð21bÞ

unþ1 ¼ ~unþ1 � Dt
bq.
r/ ð21cÞ

pnþ1 ¼ pn þ a/� r2r � ~unþ1 ð21dÞ
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where r1, r2 and a are parameters to be specified.
The penalty–projection method is obtained by the choice of parameters r1 = r2 = r, a = 1. For the rota-

tional penalty–projection variant, values of the parameters are r1 = r, r2 = r + l, a = 1.
The case r1 = r2 = 0 and a = 1 corresponds to the so-called incremental projection method, which is prob-

ably today the most popular one. To the best of our knowledge, the origin of this scheme can be traced back to
Goda [9], and, since that time, this method has received a considerable attention: see in particular [33] for the
extension to (formally) second order in time, [24,26,28] for the analysis in the time semi-discrete case and
[13,12,14,15] for the analysis in the fully discrete case. The main identified drawback of this scheme is that,
as the parameter r2 is zero, the pressure inherits the boundary conditions of /, i.e., spurious homogeneous
Neumann boundary conditions on no-slip boundaries and homogeneous Dirichlet conditions on open
boundaries.

The choice r1 = 0, r2 = l and a = 1 leads to the method introduced in [31] and analysed in [17,15]. Follow-
ing these last two papers, we will refer it as the rotational pressure correction scheme.

As detailed at the end of Section 2, making the particular choice r1 = Dt�2 and r2 = 0 yields a method which
will give the same results for the velocity as the scheme studied in [25, Section 6]. In this case, a post-processing
will be necessary to recover an accurate approximation of the pressure.

Finally, taking r1 = r2 = r and a = 0, one recovers a scheme which presents some similarities with the so-
called vectorial projection method presented in the finite volume framework in [4] (see [1] for a discussion
on this topic). The reason why the parameter a is set to zero in the latter work is that the authors make
use of a different projection step, which does not provide a natural pressure increment. On the opposite, with
the projection step employed here, to include the variable / in the pressure correction seems a reasonable
option, and the case a = 0 is not considered here.

Table 1 gathers the choices of parameters corresponding to the various methods considered in numerical
experiments. Of course, this choice of schemes does not pretend to be exhaustive (see, e.g. [20,2] for alternative
pressure correction schemes).

The present section is organized as follows. First, we examine the accuracy of the method on a standard
Navier–Stokes benchmark, namely the computation of Taylor–Green vortices. In a second time, we focus
on the behaviour of the pressure near the boundaries for a Stokes flow with Dirichlet boundary conditions.
Third, we deal with a case with open boundary conditions. Finally, we turn to a more complex situation,
the two-dimensional flow past a cylinder.

All the simulations presented here are performed with a formally second order in time scheme, correspond-
ing to Eq. (5), i.e., a second order backward differentiation formula for the approximation of the time deriv-
ative and a second order Richardson extrapolation for the estimation of the advection field. This scheme is
initialized with a first time step performed with a standard backward Euler differentiation (relation (4)).
The pressure at t = 0 is obtained by interpolation of the solution when available (i.e., in the first three cases)
or set to zero. The problem is discretized in space using P2–P1 finite elements (the so-called Taylor–Hood
mixed finite element, see, e.g. [8], [6, Chapter 5], [22, Chapter 9]). The solution of the coupled system obtained
when using the semi-implicit scheme is performed by a standard augmented Lagrangian technique (see [7]).

The practical implementation has been performed using the software object-oriented component library
PELICANS, developed at IRSN [21].

4.1. Taylor–Green vortices

As a first benchmark for the proposed numerical method, we use a particular periodic flow widely used in
the literature (e.g. [20]), which enjoys the property to obey the Navier–Stokes equations with a zero forcing
Table 1
Choice of parameters in (20) for the schemes used in the numerical experiments

Incremental projection method (standard form) r1 = 0, r2 = 0, a = 1
Incremental projection method (rotational form) r1 = 0, r2 = l, a = 1
Penalty–projection method (standard form) r1 = r, r2 = r, a = 1
Penalty–projection method (rotational form) r1 = r, r2 = r + l, a = 1
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term. It is a particular case of a class of flows which seems to have been first introduced by Taylor and Green
[29]. The velocity and pressure fields read:
Fig. 1.
projec

Fig. 2.
projec
uðx; y; tÞ ¼
� cosð2pxÞ sinð2pyÞ

sinð2pxÞ cosð2pyÞ

� �
expð�8p2ltÞ

pðx; y; tÞ ¼ � ðcosð4pxÞ þ cosð4pyÞÞ
4

expð�16p2ltÞ
The chosen computational domain is X = [1/8,5/8] · [1/8,5/8] and the velocity is imposed on the whole bound-
ary. Of course, initial and boundary conditions are taken in such a way to match the analytical solution. The
density is set to . = 1 and the viscosity to l = 0.01.

The meshes used in this study are obtained by cutting the domain in an n · n regular grid and splitting each
squared cell along its diagonals to obtain four simplicial elements.

Figs. 1–3 show the difference between the numerical solution and the analytical one at t = 1, measured in
[L2(X)]d and [H1(X)]d norms for the velocity and in L2(X) norm for the pressure. These curves are drawn for
the 80 · 80 mesh.
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Fig. 3. Taylor–Green vortex-L2 norm of the error for the pressure as a function of the time step, for the incremental, rotational, penalty–
projection (r = 1, r = 10, r = 100) schemes and for the semi-implicit scheme.

Table 2
Difference between the exact solution and the numerical solution on the time-convergence plateau and between the exact solution and its
interpolate (values obtained at t = 1)

20 · 20 40 · 40 80 · 80

jju� uhjj½L2ðXÞ�d 1.09 · 10�4 1.34 · 10�5 1.66 · 10�6

jju� uijj½L2ðXÞ�d 2.07 · 10�5 2.59 · 10�6 3.23 · 10�7

jju� uhjj½H1ðXÞ�d 3.75 · 10�3 9.34 · 10�4 2.32 · 10�4

jju� uijj½H1ðXÞ�d 9.13 · 10�4 2.28 · 10�4 5.71 · 10�5

jjp � phjjL2ðXÞ 2.86 · 10�3 7.14 · 10�4 1.78 · 10�4

jjp � pijjL2ðXÞ 5.04 · 10�3 1.26 · 10�3 3.15 · 10�4
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All the curves show an error decrease with the time step for large values of this latter, then a plateau is
observed, which corresponds to the space discretization error. Values of the error on the plateau are gathered,
for various meshes, in Table 2, together with the interpolation error (difference between the analytical solution
and the element of the approximation space obtained by interpolating the solution at each node). One can
check than an optimal spatial convergence is found in each case.

As far as the time convergence is concerned, the first observation is the outstanding importance of the splitting
error associated to the standard projection schemes at large time steps; for the incremental projection method, for
instance, the error is about two decades higher than for the semi-implicit scheme, and this ratio even increases for
the pressure when the time step decreases, since these schemes does not exhibit the same convergence rate.

The rates of convergence globally agree with theoretical studies. For the velocity, a second order conver-
gence is observed in the [L2(X)]d norm for the semi-implicit scheme (see [18] for an in-depth study of the
Crank–Nicholson time stepping method), the incremental projection [14] and the rotational projection method
[17]. The pressure is first order accurate for the incremental projection method and second order accurate for
the rotational projection scheme and the semi-implicit scheme, which is slightly better than theoretical bounds:
a 3/2 order convergence for the rotational projection scheme is proven in [17] (and seems to be optimal for
general computational domains), a second order convergence for the pressure in a weaker norm than the
L2(X) one is given in [23] (see remark below).

Concerning the penalty–projection scheme, the first point is that any penalization leads to a decrease of the
error. Keeping a constant value of the augmentation parameter r when the time-step decreases, the second order
in time convergence is lost, but the error remains bounded from above by the incremental projection one. Sec-
ond, as can be inferred from the literature of penalty methods [27], the splitting error vanishes when r raises.
However, keeping this parameter within relatively moderate bounds seems to be sufficient (r = 100 for the
greater value, having in mind the presence of the inverse of the pressure mass matrix as scaling operator in
the definition of the penalty term). Finally, the results compare with the rotational projection scheme as follows.
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For the velocity, the results with r = l are superimposed (the corresponding curves for the penalty–projection
scheme have been omitted in Figs. 1 and 2); for this test, where the viscosity is rather small (l = 0.01), the dif-
ference with the incremental projection scheme is hardly visible. For the pressure, the rotational scheme is clearly
better than the penalty–projection scheme with r = l, but the opposite conclusion holds for larger values of the
augmentation parameter. The same behaviour has been confirmed in all the experiments presented in this paper.

Remark (Convergence of the incremental projection scheme).

1. The evolution of the pressure error as a function of the time step for the incremental projection scheme
shows a linear decrease at large time steps, then, for smaller values of the time step, the convergence seems
to become faster. As pointed out in [16, Section 7], this phenomenon has the following explanation. Higher
order convergence results for the pressure are known to hold in weaker norms [12, Section 4.4] than the
L2(X) one. As in finite dimensional spaces, all the norms are equivalent, the L2(X) norm of the error is
bounded by the weaker norm multiplied by a coefficient depending on the meshing. For large values of
the time step, the L2 estimate yields the sharpest bound and a first order convergence rate is observed; then,
when the time step falls below a threshold value (decreasing with the mesh size), the bound in the weaker
norm becomes sharper and a faster decrease of the error occurs.

2. The pressure convergence is known to be limited by the prescription of spurious boundary conditions to the
pressure increment in the projection step. This can be checked here by the following simple numerical
experiment. Let us solve the same problem on a different computational domain X = [1/4, 5/4] · [1/4,5/
4], such that (by chance) the exact pressure satisfies homogeneous Neumann boundary conditions over
the whole boundary. Then a second order convergence rate is recovered.
4.2. A Stokes flow with Dirichlet boundary conditions

The incremental projection method is known to be plagued by the presence of boundary layers in the pres-
sure solution, which results from artificial homogeneous Neumann boundary conditions prescribed to the pres-
sure increment on the part of the boundary where the velocity is prescribed. This phenomenon is highlighted in
the setting used here, where a discrete pressure Laplacian operator with Neumann boundary conditions is
explicitly built; however, similar problems also affect projection methods derived via an inexact factorization
of the algebraic discrete equations (e.g. [10,11,22,32] for a presentation of such methods, [16, Section 6] and
[32, pp. 53–54], [22] for a discussion on this topic). The aim of this section is to assess the behaviour of the
penalty–projection scheme with respect to this issue.

As the behaviour of the pressure error in the L1 norm is strongly affected by the regularity of the domain
[17,16], we chose for X a circle, of diameter 1. We only solve an unstationary Stokes problem (with l = 1,
$ Æ s(u) = lDu), and we adjust the forcing term in such a way that the velocity and pressure fields read:
uðx; y; tÞ ¼
sinðxþ tÞ sinðy þ tÞ
cosðxþ tÞ cosðy þ tÞ

� �
pðx; y; tÞ ¼ cosðx� y þ tÞ
This test case is the same as studied in [17,16], which allows a verification of our computations, as methods
considered in these papers are part of the set of schemes tested in the present work.

We use for this test an unstructured mesh of 3600 elements.
The distribution of the pressure error for the considered schemes at t = 1 is shown in Fig. 4. The time step

used for these computations is Dt = 0.0125.
As expected, a boundary layer is observed for the pressure error with the incremental scheme. This error mea-

sured in the L1 norm is, for this scheme, almost two orders of magnitude greater than for the implicit method.
This phenomenon disappears for the rotational variants of both the incremental projection scheme and the

penalty–projection scheme, and for the standard penalty–projection method for high values of the augmenta-
tion parameter. The spatial distribution of the pressure error then becomes strongly influenced by the geomet-
rical structure of the meshing. In particular, peaks appear along a diameter which has been used as a symmetry
axis for the mesh generation.



Fig. 4. Stokes flow with prescribed velocity boundary conditions – distribution of the pressure error for the incremental, rotational,
penalty–projection (r = 1, r = 10, r = 100) schemes and for the implicit scheme.
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For the rotational projection scheme, the error is still 10 times higher than for the implicit scheme. Equiv-
alent results are obtained with the penalty–projection scheme for r ranging between 1 and 10, then, for higher
values of r, the error becomes smaller.

4.3. A Stokes flow with open boundary conditions

If the prescription of spurious Neumann boundary conditions for the pressure on Dirichlet parts of the
boundary is an unquestionable drawback of the incremental projection method, things even go worse when
open boundaries are to be dealt with. Indeed, homogeneous Dirichlet boundary conditions have to be artifi-
cially enforced to the pressure increment on that part of the boundary. This is done either explicitly (when a
pressure Poisson problem is built at the continuous level) or implicitly (within the algebraic splitting approach,
see [16, Section 6] and [32, pp. 53–54] for a related discussion). Since the pressure approximation space is
consequently modified, one may fear to lose even the spatial accuracy of the scheme; both theoretical and
experimental evidences that this indeed occurs are given in [15].

As before, the penalty–projection scheme and the rotational projection scheme share the property that the
spurious boundary conditions are imposed only to the intermediate variable / and not (by induction) to the
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pressure itself. Hence we can hope that these schemes enjoy significantly better convergence properties. The
goal of the present section is to check this issue.

As in the preceding section, we choose a test case already used in the literature [15,16]. It consists in an
unstationary Stokes problem (with l = 1, $ Æ s(u) = lDu), with a forcing term and initial and boundary
conditions corresponding to the following expression for the velocity and pressure fields:
Fig. 5
increm

Fig. 6
increm
uðx; y; tÞ ¼
sinðxÞ sinðy þ tÞ
cosðxÞ cosðy þ tÞ

� �
pðx; y; tÞ ¼ cosðxÞ sinðy þ tÞ
The computational domain is X = [0, 1] · [0,1] and the velocity is prescribed on its boundary, except for the
part included in the y-axis, where homogeneous natural Neumann conditions are imposed:
lru � n� pn ¼ 0
The meshes are obtained by cutting along its diagonals in four simplices each square of a n · n regular grid.
Figs. 5–7 show, for the 80 · 80 meshing, the difference between the numerical solution and the analytical

one at t = 1, measured in [L2(X)]d and [H1(X)]d norms for the velocity and in L2(X) norm for the pressure.
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Fig. 7. Stokes flow with open boundary conditions – L2 norm of the error for the pressure as a function of the time step, for the
incremental, rotational, penalty–projection (r = 1, r = 10, r = 100) schemes and for the implicit scheme.
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As expected, the incremental projection method converges for small time steps to a solution which differs
from the plateau obtained with the other schemes, and corresponds to a much greater error for both velocity
and pressure. Errors obtained at small time steps are gathered for various meshings in Table 3 for the incre-
mental projection scheme and in Table 4 for the other schemes. A space convergence order of 1/2 is observed
for the incremental projection method, which is in agreement with the bound proven in [15], whereas an opti-
mal convergence rate is obtained for the other schemes.

A second order convergence with respect to the time step is observed for the implicit scheme for both the
velocity and the pressure. The results of the rotational projection scheme conform to the numerical experi-
ments reported in [15]: the convergence rate is respectively 1.65 and 1 for the velocity in [L2(X)]d and
[H1(X)]d norm, and lies between 1 and 3/2 for the pressure in L2(X) norm. As for the preceding numerical
experiments, the penalty–projection method with r = l (=1) gives for the velocity the same results as the rota-
tional projection scheme, then the results come closer and closer to the implicit scheme when the augmentation
Table 3
Difference between the exact solution and the numerical solution on the time-convergence plateau, for the incremental projection method,
and difference between the exact solution and its interpolate (values obtained at t = 1)

20 · 20 40 · 40 80 · 80

jju� uhjj½L2ðXÞ�d 7.76 · 10�4 3.24 · 10�4 1.46 · 10�4

jju� uijj½L2ðXÞ�d 9.66 · 10�7 1.21 · 10�7 1.51 · 10�8

jju� uhjj½H1ðXÞ�d 3.64 · 10�2 2.59 · 10�2 1.84 · 10�2

jju� uijj½H1ðXÞ�d 8.39 · 10�5 2.10 · 10�5 5.26 · 10�6

jjp � phjjL2ðXÞ 6.14 · 10�2 4.34 · 10�2 3.07 · 10�2

jjp � pijjL2ðXÞ 2.19 · 10�4 5.47 · 10�5 1.37 · 10�5

Table 4
Difference between the exact solution and the numerical solution on the time-convergence plateau, for schemes other than the incremental
projection method, and difference between the exact solution and its interpolate (values obtained at t = 1)

20 · 20 40 · 40 80 · 80

jju� uhjj½L2ðXÞ�d 9.12 · 10�7 1.14 · 10�7 1.55 · 10�8

jju� uijj½L2ðXÞ�d 9.66 · 10�7 1.21 · 10�7 1.51 · 10�8

jju� uhjj½H1ðXÞ�d 7.77 · 10�5 1.94 · 10�5 4.85 · 10�6

jju� uijj½H1ðXÞ�d 8.39 · 10�5 2.10 · 10�5 5.26 · 10�6

jjp � phjjL2ðXÞ 6.01 · 10�5 1.51 · 10�5 3.76 · 10�6

jjp � pijjL2ðXÞ 2.19 · 10�4 5.47 · 10�5 1.37 · 10�5
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parameter increases. For the pressure, a higher value (r = 10) is necessary to recover the accuracy of the rota-
tional projection method, this point being corrected by the use of the rotational penalty–projection variant.

4.4. Flow past a cylinder

In this section, we are concerned by a more physically meaningful problem, namely the two-dimensional,
incompressible, laminar and unsteady flow of a viscous fluid around a solid circular cylinder, in the layout
proposed in [19].

We use a rectangular domain X = [0,20] · [0, 5] with a solid obstacle represented by a disk C. Its center lies
at the point (5,2.5) and its diameter is equal to 1.

The meshing used for this test consists in roughly 4200 elements, which leads to about 8500 degrees of free-
dom for each component of the velocity, 2200 for the pressure. The velocity is prescribed to zero on the
boundary of C and to the value (1,0) at the inflow boundary of the computational domain. We impose a per-
fect slip condition to the velocity at the top and bottom of X and natural Neumann conditions at the exit.

The density is set to . = 1 and the viscosity to l = 0.01, which leads to a cylinder diameter-based Reynolds
number of 100, at which the flow is known to be unsteady, exhibiting the periodic shedding of vortices down-
stream the cylinder. This phenomenon is triggered in our computation by introducing a perturbation affecting
the inlet velocity during one time unit, starting at time t = 15.

Results are clearly sensitive to the boundary conditions prescribed at the top and bottom of the computa-
tional domain, which shows than an accurate simulation of the physics of the flow would require a more
appropriate treatment of the boundary conditions (either enlarging the computational domain, either using
more sophisticated modelling of artificial boundaries as proposed in [3]). However, they are in reasonable
agreement with the literature: drag coefficient varying in time from 1.69 to 1.72 and vortex shedding period
of 4.92 time units.

Fig. 8 shows the evolution versus the augmentation parameter r of the difference between the velocity fields
obtained at time t = 60 by the semi-implicit coupled scheme and the penalty–projection one, measured in the
[L2(X)]d norm. When r is large, the magnitude of the splitting error varies approximately as 1/r. Moreover, we
can see that it decreases with the time step, with an apparent order lying between 1 and 2. This behaviour can also
be inferred from the variation of the total error as a function of the time step observed in the other test cases.

5. Discussion

The numerical experiments reported in this paper show that the penalty–projection method yields a consid-
erable gain in accuracy compared to incremental projection schemes, implemented as well in standard form as
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in the rotational form (see [16] for a review). The splitting error is reduced as soon as the augmentation param-
eter r takes a significant value, and decreases down to negligible values as r is increased. Results of the semi-
implicit method are thus recovered in the latter case. The pressure layers suffered by the incremental projection
scheme in the vicinity of the prescribed velocity boundaries are suppressed. Finally, the loss of spatial conver-
gence of the standard incremental projection scheme in case of open boundary conditions does not occur
anymore.

As a consequence, we observe that the scheme is convergent, or, more precisely speaking, enjoys conver-
gence properties at least equivalent to the standard incremental projection method, whatever the augmenta-
tion parameter may be. This implies, in particular, that the rate of convergence for the velocity is bounded
from above by the second order estimate valid for the incremental scheme with Dirichlet boundary conditions
(even if the penalty–projection scheme is not second order), as soon as a formally second-order scheme is
employed. We confirm this desirable feature by a theoretical analysis in energy norms in [1].

As classically observed when making use of penalty or augmented Lagrangian methods, the price to pay for
this gain in accuracy is an ill-conditioning of the linear system associated to the prediction step, which may
reinforce the importance of keeping a reasonable value for the augmentation parameter. Note also that the
decoupling of the velocity components in the prediction step, when the divergence of the stress tensor can
be expressed as the velocity Laplacian (i.e., for constant viscosity and particular boundary conditions), is lost.
However, even if the penalty–projection scheme is more time-consuming than the considered incremental pro-
jection methods for a given time-step, it has been observed in our tests to be cheaper to yield a given accuracy.
Note nevertheless that this fact is reported here as a first information, but clearly needs additional assessment,
with respect to at least two aspects. First, a numerical efficiency study must include a careful discussion con-
cerning the preconditioning of the linear algebraic operators, specially for the velocity prediction step, in
which the convergence of Krylov’s subspaces methods highly depends on this issue; this point was disregarded
in the present work. Second, the behaviour of linear solvers appears to be highly problem-dependent. For
instance, at small time step and for the ILU preconditioned GMRES algorithm, taking a Richardson’s time
extrapolation of the velocity as starting point in the prediction stage, convergence was obtained within less
than twenty iterations for the Taylor–Green vortices test, as it took a few hundred iterations for the compu-
tation of the flow past a cylinder. A careful design of a numerical efficiency study should then deal with this
issue, which has not been the case for the choice of the tests investigated here. With this respect, note that the
interest of the penalty–projection scheme should grow for non-isothermal applications which involve temper-
ature-dependent physical properties (and even, for some industrial applications, properties tabulated with
respect to the temperature), for which the part of the CPU time devoted to the assembling of the discrete oper-
ators becomes important. In any case, testing the present scheme in a multi-grid framework seems appealing;
this is the subject for a further work.
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